library("tidyverse")
library("tibble")
library("msigdbr")
library("ggplot2")
library("TCGAbiolinks")
library("RNAseqQC")
library("DESeq2")
library("ensembldb")
library("purrr")
library("magrittr")
library("vsn")
library("matrixStats")
library("dplyr")
library("grex")
library("survminer")
library("survival")
Create a function for downloading TCGA gene expression data.
For more detailed documentation, refer to
2. Differential Gene Expression Analysis - TCGA.Rmd
.
query_and_filter_samples <- function(project) {
query_tumor <- GDCquery(
project = project,
data.category = "Transcriptome Profiling",
data.type = "Gene Expression Quantification",
experimental.strategy = "RNA-Seq",
workflow.type = "STAR - Counts",
access = "open",
sample.type = "Primary Tumor"
)
tumor <- getResults(query_tumor)
query_normal <- GDCquery(
project = project,
data.category = "Transcriptome Profiling",
data.type = "Gene Expression Quantification",
experimental.strategy = "RNA-Seq",
workflow.type = "STAR - Counts",
access = "open",
sample.type = "Solid Tissue Normal"
)
normal <- getResults(query_normal)
submitter_ids <- inner_join(tumor, normal, by = "cases.submitter_id") %>%
dplyr::select(cases.submitter_id)
tumor <- tumor %>%
dplyr::filter(cases.submitter_id %in% submitter_ids$cases.submitter_id)
normal <- normal %>%
dplyr::filter(cases.submitter_id %in% submitter_ids$cases.submitter_id)
samples <- rbind(tumor, normal)
unique(samples$sample_type)
query_project <- GDCquery(
project = project,
data.category = "Transcriptome Profiling",
data.type = "Gene Expression Quantification",
experimental.strategy = "RNA-Seq",
workflow.type = "STAR - Counts",
access = "open",
sample.type = c("Solid Tissue Normal", "Primary Tumor"),
barcode = as.list(samples$sample.submitter_id)
)
# If this is your first time running this notebook (i.e., you have not yet downloaded the results of the query in the previous block),
# uncomment the line below
# GDCdownload(query_project)
return(list(samples = samples, query_project = query_project))
}
Download the TCGA gene expression data for colorectal cancer (TCGA-COAD).
projects <- c("TCGA-COAD")
with_results_projects <- c()
samples <- list()
project_data <- list()
for (project in projects) {
result <- tryCatch(
{
result <- query_and_filter_samples(project)
samples[[project]] <- result$samples
project_data[[project]] <- result$query_project
with_results_projects <- c(with_results_projects, project)
},
error = function(e) {
}
)
}
Running the code block above should generate and populate a directory
named GDCdata
.
Construct the RNA-seq count matrix for each cancer type.
tcga_data <- list()
tcga_matrix <- list()
projects <- with_results_projects
for (project in projects) {
tcga_data[[project]] <- GDCprepare(project_data[[project]], summarizedExperiment = TRUE)
}
for (project in projects) {
count_matrix <- assay(tcga_data[[project]], "unstranded")
# Remove duplicate entries
count_matrix_df <- data.frame(count_matrix)
count_matrix_df <- count_matrix_df[!duplicated(count_matrix_df), ]
count_matrix <- data.matrix(count_matrix_df)
rownames(count_matrix) <- cleanid(rownames(count_matrix))
count_matrix <- count_matrix[!(duplicated(rownames(count_matrix)) | duplicated(rownames(count_matrix), fromLast = TRUE)), ]
tcga_matrix[[project]] <- count_matrix
}
Format the samples
table so that it can be fed as input
to DESeq2.
for (project in projects) {
rownames(samples[[project]]) <- samples[[project]]$cases
samples[[project]] <- samples[[project]] %>%
dplyr::select(case = "cases.submitter_id", type = "sample_type")
samples[[project]]$type <- str_replace(samples[[project]]$type, "Solid Tissue Normal", "normal")
samples[[project]]$type <- str_replace(samples[[project]]$type, "Primary Tumor", "tumor")
}
DESeq2 requires the row names of samples
should be
identical to the column names of count_matrix
.
for (project in projects) {
colnames(tcga_matrix[[project]]) <- gsub(x = colnames(tcga_matrix[[project]]), pattern = "\\.", replacement = "-")
tcga_matrix[[project]] <- tcga_matrix[[project]][, rownames(samples[[project]])]
# Sanity check
print(all(colnames(tcga_matrix[[project]]) == rownames(samples[[project]])))
}
For more detailed documentation on obtaining the gene set, refer to
7. Differential Gene Expression Analysis - TCGA - Pan-cancer - Unique Genes.Rmd
.
RCDdb <- "temp/unique_genes/necroptosis_ferroptosis_pyroptosis/"
Write utility functions for filtering the gene sets, performing differential gene expression analysis, plotting the results, and performing variance-stabilizing transformation.
filter_gene_set_and_perform_dgea <- function(genes) {
tcga_rcd <- list()
for (project in projects) {
rownames(genes) <- genes$gene_id
tcga_rcd[[project]] <- tcga_matrix[[project]][rownames(tcga_matrix[[project]]) %in% genes$gene_id, ]
tcga_rcd[[project]] <- tcga_rcd[[project]][, rownames(samples[[project]])]
}
dds_rcd <- list()
res_rcd <- list()
for (project in projects) {
print(project)
print("=============")
dds <- DESeqDataSetFromMatrix(
countData = tcga_rcd[[project]],
colData = samples[[project]],
design = ~type
)
dds <- filter_genes(dds, min_count = 10)
dds$type <- relevel(dds$type, ref = "normal")
dds_rcd[[project]] <- DESeq(dds)
res_rcd[[project]] <- results(dds_rcd[[project]])
}
deseq.bbl.data <- list()
for (project in projects) {
deseq.results <- res_rcd[[project]]
deseq.bbl.data[[project]] <- data.frame(
row.names = rownames(deseq.results),
baseMean = deseq.results$baseMean,
log2FoldChange = deseq.results$log2FoldChange,
lfcSE = deseq.results$lfcSE,
stat = deseq.results$stat,
pvalue = deseq.results$pvalue,
padj = deseq.results$padj,
cancer_type = project,
gene_symbol = genes[rownames(deseq.results), "gene"]
)
}
deseq.bbl.data.combined <- bind_rows(deseq.bbl.data)
deseq.bbl.data.combined <- dplyr::filter(deseq.bbl.data.combined, abs(log2FoldChange) >= 1.5 & padj < 0.05)
return(deseq.bbl.data.combined)
}
plot_dgea <- function(deseq.bbl.data.combined) {
sizes <- c("<10^-15" = 4, "10^-10" = 3, "10^-5" = 2, "0.05" = 1)
deseq.bbl.data.combined <- deseq.bbl.data.combined %>%
mutate(fdr_category = cut(padj,
breaks = c(-Inf, 1e-15, 1e-10, 1e-5, 0.05),
labels = c("<10^-15", "10^-10", "10^-5", "0.05"),
right = FALSE
))
top_genes <- deseq.bbl.data.combined %>%
group_by(cancer_type) %>%
mutate(rank = rank(-abs(log2FoldChange))) %>%
dplyr::filter(rank <= 10) %>%
ungroup()
ggplot(top_genes, aes(y = cancer_type, x = gene_symbol, size = fdr_category, fill = log2FoldChange)) +
geom_point(alpha = 0.5, shape = 21, color = "black") +
scale_size_manual(values = sizes) +
scale_fill_gradient2(low = "blue", mid = "white", high = "red", limits = c(min(deseq.bbl.data.combined$log2FoldChange), max(deseq.bbl.data.combined$log2FoldChange))) +
theme_minimal() +
theme(
axis.text.x = element_text(size = 9, angle = 90, hjust = 1)
) +
theme(legend.position = "bottom") +
theme(legend.position = "bottom") +
labs(size = "Adjusted p-value", fill = "log2 FC", y = "Cancer type", x = "Gene")
}
perform_vsd <- function(genes) {
tcga_rcd <- list()
for (project in projects) {
rownames(genes) <- genes$gene_id
tcga_rcd[[project]] <- tcga_matrix[[project]][rownames(tcga_matrix[[project]]) %in% genes$gene_id, ]
tcga_rcd[[project]] <- tcga_rcd[[project]][, rownames(samples[[project]])]
}
vsd_rcd <- list()
for (project in projects) {
print(project)
print("=============")
dds <- DESeqDataSetFromMatrix(
countData = tcga_rcd[[project]],
colData = samples[[project]],
design = ~type
)
dds <- filter_genes(dds, min_count = 10)
# Perform variance stabilization
dds <- estimateSizeFactors(dds)
nsub <- sum(rowMeans(counts(dds, normalized = TRUE)) > 10)
vsd <- vst(dds, nsub = nsub)
vsd_rcd[[project]] <- assay(vsd)
}
return(vsd_rcd)
}
Fetch the gene set of interest.
genes <- read.csv(paste0(RCDdb, "Necroptosis.csv"))
print(genes)
genes$gene_id <- cleanid(genes$gene_id)
genes <- distinct(genes, gene_id, .keep_all = TRUE)
genes <- subset(genes, gene_id != "")
genes
Filter the genes to include only those in the gene set of interest, and then perform differential gene expression analysis.
deseq.bbl.data.combined <- filter_gene_set_and_perform_dgea(genes)
[1] "TCGA-COAD"
[1] "============="
Warning: some variables in design formula are characters, converting to factorsestimating size factors
estimating dispersions
gene-wise dispersion estimates
mean-dispersion relationship
final dispersion estimates
fitting model and testing
-- replacing outliers and refitting for 1 genes
-- DESeq argument 'minReplicatesForReplace' = 7
-- original counts are preserved in counts(dds)
estimating dispersions
fitting model and testing
deseq.bbl.data.combined
Plot the results.
plot_dgea(deseq.bbl.data.combined)
Perform variance-stabilizing transformation for further downstream analysis (i.e., for survival analysis).
vsd <- perform_vsd(genes)
[1] "TCGA-COAD"
[1] "============="
Download clinical data from TCGA, and perform some preprocessing: -
The deceased
column should be FALSE
if the
patient is alive and TRUE
otherwise - The
overall_survival
column should reflect the follow-up time
if the patient is alive and the days to death otherwise
download_clinical_data <- function(project) {
clinical_data <- GDCquery_clinic(project)
clinical_data$deceased <- ifelse(clinical_data$vital_status == "Alive", FALSE, TRUE)
clinical_data$overall_survival <- ifelse(clinical_data$vital_status == "Alive",
clinical_data$days_to_last_follow_up,
clinical_data$days_to_death
)
return(clinical_data)
}
tcga_clinical <- list()
for (project in projects) {
tcga_clinical[[project]] <- download_clinical_data(project)
}
Write utility functions for performing survival analysis.
construct_gene_df <- function(gene_of_interest, project) {
gene_df <- vsd[[project]] %>%
as.data.frame() %>%
rownames_to_column(var = "gene_id") %>%
gather(key = "case_id", value = "counts", -gene_id) %>%
left_join(., genes, by = "gene_id") %>%
dplyr::filter(gene == gene_of_interest) %>%
dplyr::filter(case_id %in% rownames(samples[[project]] %>% dplyr::filter(type == "normal")))
q1 <- quantile(gene_df$counts, probs = 0.25)
q3 <- quantile(gene_df$counts, probs = 0.75)
gene_df$strata <- ifelse(gene_df$counts >= q3, "HIGH", ifelse(gene_df$counts <= q1, "LOW", "MIDDLE"))
gene_df <- gene_df %>% dplyr::filter(strata %in% c("LOW", "HIGH"))
gene_df$case_id <- paste0(sapply(strsplit(as.character(gene_df$case_id), "-"), `[`, 1), '-',
sapply(strsplit(as.character(gene_df$case_id), "-"), `[`, 2), '-',
sapply(strsplit(as.character(gene_df$case_id), "-"), `[`, 3))
gene_df <- merge(gene_df, tcga_clinical[[project]], by.x = "case_id", by.y = "submitter_id")
return(gene_df)
}
compute_surival_fit <- function(gene_df) {
return (survfit(Surv(overall_survival, deceased) ~ strata, data = gene_df))
}
compute_cox <- function(gene_df) {
return (coxph(Surv(overall_survival, deceased) ~ strata, data=gene_df))
}
plot_survival <- function(fit) {
return(ggsurvplot(fit,
data = gene_df,
pval = T,
risk.table = T,
risk.table.height = 0.3
))
}
compute_survival_diff <- function(gene_df) {
return(survdiff(Surv(overall_survival, deceased) ~ strata, data = gene_df))
}
Perform survival analysis by testing for the difference in the Kaplan-Meier curves using the G-rho family of Harrington and Fleming tests: https://rdrr.io/cran/survival/man/survdiff.html
MLKL is the primary executor of necroptosis.
significant_projects <- c()
significant_genes <- c()
ctr <- 1
for (project in projects) {
for (gene in c("MLKL", genes$gene)) {
cat(project, gene, "\n\n")
tryCatch (
{
gene_df <- construct_gene_df(gene, project)
},
error = function(e) {
}
)
if (nrow(gene_df) > 0) {
fit <- compute_surival_fit(gene_df)
tryCatch (
{
survival <- compute_survival_diff(gene_df)
cox <- compute_cox(gene_df)
print(ctr)
ctr <- ctr + 1
print(survival)
cat("\n")
print(cox)
print(plot_survival(fit))
if (pchisq(survival$chisq, length(survival$n)-1, lower.tail = FALSE) < 0.05) {
significant_projects <- c(significant_projects, project)
significant_genes <- c(significant_genes, gene)
}
},
error = function(e) {
}
)
}
cat("\n\n============================\n\n")
}
}
TCGA-COAD MLKL
[1] 1
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11 6 5.35 0.0781 0.242
strata=LOW 11 3 3.65 0.1147 0.242
Chisq= 0.2 on 1 degrees of freedom, p= 0.6
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.3753 0.6871 0.7675 -0.489 0.625
Likelihood ratio test=0.24 on 1 df, p=0.6228
n= 22, number of events= 9
============================
TCGA-COAD RBCK1
[1] 2
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11 7 4.92 0.882 2.12
strata=LOW 11 3 5.08 0.853 2.12
Chisq= 2.1 on 1 degrees of freedom, p= 0.1
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -1.1392 0.3201 0.8201 -1.389 0.165
Likelihood ratio test=2.25 on 1 df, p=0.1338
n= 22, number of events= 10
============================
TCGA-COAD JAK2
[1] 3
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11 4 2.52 0.874 1.38
strata=LOW 11 3 4.48 0.491 1.38
Chisq= 1.4 on 1 degrees of freedom, p= 0.2
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.8750 0.4168 0.7682 -1.139 0.255
Likelihood ratio test=1.31 on 1 df, p=0.2522
n= 22, number of events= 7
============================
TCGA-COAD ZBP1
[1] 4
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11 5 5.04 0.000314 0.00094
strata=LOW 11 3 2.96 0.000534 0.00094
Chisq= 0 on 1 degrees of freedom, p= 1
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.02359 1.02387 0.76968 0.031 0.976
Likelihood ratio test=0 on 1 df, p=0.9756
n= 22, number of events= 8
============================
TCGA-COAD RNF31
[1] 5
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11 4 3.38 0.113 0.224
strata=LOW 11 3 3.62 0.105 0.224
Chisq= 0.2 on 1 degrees of freedom, p= 0.6
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.3641 0.6948 0.7733 -0.471 0.638
Likelihood ratio test=0.22 on 1 df, p=0.6359
n= 22, number of events= 7
============================
TCGA-COAD IFNB1
[1] 6
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11 4 3.38 0.113 0.224
strata=LOW 11 3 3.62 0.105 0.224
Chisq= 0.2 on 1 degrees of freedom, p= 0.6
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.3641 0.6948 0.7733 -0.471 0.638
Likelihood ratio test=0.22 on 1 df, p=0.6359
n= 22, number of events= 7
============================
TCGA-COAD TRAF5
[1] 7
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11 5 3.53 0.614 1.39
strata=LOW 11 3 4.47 0.485 1.39
Chisq= 1.4 on 1 degrees of freedom, p= 0.2
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.8894 0.4109 0.7774 -1.144 0.253
Likelihood ratio test=1.32 on 1 df, p=0.2503
n= 22, number of events= 8
============================
TCGA-COAD BIRC2
[1] 8
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11 1 2.46 0.863 1.71
strata=LOW 11 5 3.54 0.598 1.71
Chisq= 1.7 on 1 degrees of freedom, p= 0.2
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 1.361 3.899 1.121 1.214 0.225
Likelihood ratio test=1.84 on 1 df, p=0.1753
n= 22, number of events= 6
============================
TCGA-COAD TRAF2
[1] 9
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11 5 5.59 0.0628 0.247
strata=LOW 11 3 2.41 0.1459 0.247
Chisq= 0.2 on 1 degrees of freedom, p= 0.6
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.4058 1.5004 0.8222 0.494 0.622
Likelihood ratio test=0.24 on 1 df, p=0.6228
n= 22, number of events= 8
============================
TCGA-COAD BCL2
[1] 10
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11 4 3.72 0.0217 0.0546
strata=LOW 11 3 3.28 0.0246 0.0546
Chisq= 0.1 on 1 degrees of freedom, p= 0.8
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.1912 0.8260 0.8191 -0.233 0.815
Likelihood ratio test=0.05 on 1 df, p=0.8156
n= 22, number of events= 7
============================
TCGA-COAD STAT4
[1] 11
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11 1 2.39 0.81 2.14
strata=LOW 11 3 1.61 1.20 2.14
Chisq= 2.1 on 1 degrees of freedom, p= 0.1
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 1.608 4.995 1.196 1.345 0.179
Likelihood ratio test=2.14 on 1 df, p=0.1432
n= 22, number of events= 4
============================
TCGA-COAD BIRC3
[1] 12
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11 2 3.04 0.353 0.741
strata=LOW 11 4 2.96 0.361 0.741
Chisq= 0.7 on 1 degrees of freedom, p= 0.4
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.7432 2.1026 0.8814 0.843 0.399
Likelihood ratio test=0.75 on 1 df, p=0.3851
n= 22, number of events= 6
============================
TCGA-COAD STAT1
[1] 13
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11 5 3.17 1.06 2.77
strata=LOW 11 1 2.83 1.19 2.77
Chisq= 2.8 on 1 degrees of freedom, p= 0.1
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -1.6717 0.1879 1.1220 -1.49 0.136
Likelihood ratio test=2.86 on 1 df, p=0.09107
n= 22, number of events= 6
============================
TCGA-COAD STAT2
[1] 14
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11 5 3.09 1.17 1.97
strata=LOW 11 3 4.91 0.74 1.97
Chisq= 2 on 1 degrees of freedom, p= 0.2
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -1.0018 0.3672 0.7409 -1.352 0.176
Likelihood ratio test=1.91 on 1 df, p=0.1674
n= 22, number of events= 8
============================
TCGA-COAD TNFSF10
[1] 15
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11 3 4.68 0.606 1.29
strata=LOW 11 7 5.32 0.534 1.29
Chisq= 1.3 on 1 degrees of freedom, p= 0.3
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.7912 2.2060 0.7133 1.109 0.267
Likelihood ratio test=1.31 on 1 df, p=0.2527
n= 22, number of events= 10
============================
TCGA-COAD TYK2
[1] 16
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11 4 3.18 0.213 0.392
strata=LOW 11 3 3.82 0.177 0.392
Chisq= 0.4 on 1 degrees of freedom, p= 0.5
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.4752 0.6218 0.7658 -0.62 0.535
Likelihood ratio test=0.39 on 1 df, p=0.5322
n= 22, number of events= 7
============================
TCGA-COAD PPIA
[1] 17
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11 2 1.94 0.00203 0.00394
strata=LOW 11 3 3.06 0.00129 0.00394
Chisq= 0 on 1 degrees of freedom, p= 0.9
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.06283 0.93910 1.00050 -0.063 0.95
Likelihood ratio test=0 on 1 df, p=0.9499
n= 22, number of events= 5
============================
TCGA-COAD TNFRSF1A
[1] 18
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11 5 2.64 2.10 4.04
strata=LOW 11 2 4.36 1.28 4.04
Chisq= 4 on 1 degrees of freedom, p= 0.04
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -1.9975 0.1357 1.1300 -1.768 0.0771
Likelihood ratio test=4.28 on 1 df, p=0.03856
n= 22, number of events= 7
============================
TCGA-COAD CAPN2
[1] 19
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11 3 4.33 0.408 0.924
strata=LOW 11 6 4.67 0.378 0.924
Chisq= 0.9 on 1 degrees of freedom, p= 0.3
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.7005 2.0148 0.7425 0.943 0.345
Likelihood ratio test=0.92 on 1 df, p=0.3368
n= 22, number of events= 9
============================
TCGA-COAD FAS
[1] 20
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11 1 2.68 1.050 1.91
strata=LOW 11 5 3.32 0.845 1.91
Chisq= 1.9 on 1 degrees of freedom, p= 0.2
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 1.399 4.053 1.097 1.275 0.202
Likelihood ratio test=2.13 on 1 df, p=0.1448
n= 22, number of events= 6
============================
TCGA-COAD PGAM5
[1] 21
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11 5 4.48 0.0611 0.22
strata=LOW 11 2 2.52 0.1084 0.22
Chisq= 0.2 on 1 degrees of freedom, p= 0.6
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.4271 0.6524 0.9164 -0.466 0.641
Likelihood ratio test=0.22 on 1 df, p=0.6376
n= 22, number of events= 7
============================
TCGA-COAD MLKL
[1] 22
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11 6 5.35 0.0781 0.242
strata=LOW 11 3 3.65 0.1147 0.242
Chisq= 0.2 on 1 degrees of freedom, p= 0.6
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.3753 0.6871 0.7675 -0.489 0.625
Likelihood ratio test=0.24 on 1 df, p=0.6228
n= 22, number of events= 9
============================
TCGA-COAD FADD
[1] 23
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11 4 2.81 0.508 0.993
strata=LOW 11 3 4.19 0.340 0.993
Chisq= 1 on 1 degrees of freedom, p= 0.3
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.8604 0.4230 0.8868 -0.97 0.332
Likelihood ratio test=1.01 on 1 df, p=0.3157
n= 22, number of events= 7
============================
TCGA-COAD TRPM7
[1] 24
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11 2 3.02 0.343 0.623
strata=LOW 11 5 3.98 0.260 0.623
Chisq= 0.6 on 1 degrees of freedom, p= 0.4
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.6567 1.9283 0.8463 0.776 0.438
Likelihood ratio test=0.65 on 1 df, p=0.4205
n= 22, number of events= 7
============================
TCGA-COAD FASLG
[1] 25
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11 3 3.26 0.0214 0.0478
strata=LOW 11 3 2.74 0.0256 0.0478
Chisq= 0 on 1 degrees of freedom, p= 0.8
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.1796 1.1968 0.8230 0.218 0.827
Likelihood ratio test=0.05 on 1 df, p=0.8273
n= 22, number of events= 6
============================
TCGA-COAD TNFRSF10B
[1] 26
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11 5 5.65 0.0752 0.224
strata=LOW 11 4 3.35 0.1269 0.224
Chisq= 0.2 on 1 degrees of freedom, p= 0.6
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.3379 1.4020 0.7172 0.471 0.638
Likelihood ratio test=0.22 on 1 df, p=0.6382
n= 22, number of events= 9
============================
TCGA-COAD VPS4A
[1] 27
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11 3 4.31 0.398 1.05
strata=LOW 11 4 2.69 0.638 1.05
Chisq= 1 on 1 degrees of freedom, p= 0.3
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.7695 2.1587 0.7690 1.001 0.317
Likelihood ratio test=1.01 on 1 df, p=0.314
n= 22, number of events= 7
============================
TCGA-COAD TNFRSF10A
[1] 28
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11 4 4.52 0.0595 0.156
strata=LOW 11 4 3.48 0.0772 0.156
Chisq= 0.2 on 1 degrees of freedom, p= 0.7
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.3024 1.3531 0.7689 0.393 0.694
Likelihood ratio test=0.16 on 1 df, p=0.6926
n= 22, number of events= 8
============================
TCGA-COAD GLUD1
[1] 29
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11 3 1.95 0.567 0.958
strata=LOW 11 3 4.05 0.273 0.958
Chisq= 1 on 1 degrees of freedom, p= 0.3
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.8832 0.4135 0.9291 -0.951 0.342
Likelihood ratio test=0.93 on 1 df, p=0.3352
n= 22, number of events= 6
============================
TCGA-COAD EIF2AK2
[1] 30
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11 4 2.78 0.534 1
strata=LOW 11 2 3.22 0.461 1
Chisq= 1 on 1 degrees of freedom, p= 0.3
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.8431 0.4304 0.8681 -0.971 0.331
Likelihood ratio test=1.01 on 1 df, p=0.3154
n= 22, number of events= 6
============================
TCGA-COAD CYLD
[1] 31
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11 3 2.87 0.00580 0.00987
strata=LOW 11 4 4.13 0.00403 0.00987
Chisq= 0 on 1 degrees of freedom, p= 0.9
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.07599 0.92683 0.76520 -0.099 0.921
Likelihood ratio test=0.01 on 1 df, p=0.921
n= 22, number of events= 7
============================
TCGA-COAD SPATA2
[1] 32
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11 3 4.83 0.696 1.96
strata=LOW 11 5 3.17 1.062 1.96
Chisq= 2 on 1 degrees of freedom, p= 0.2
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 1.1225 3.0726 0.8418 1.333 0.182
Likelihood ratio test=1.99 on 1 df, p=0.158
n= 22, number of events= 8
============================
TCGA-COAD DNM1L
[1] 33
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11 5 3.64 0.511 1.26
strata=LOW 11 2 3.36 0.553 1.26
Chisq= 1.3 on 1 degrees of freedom, p= 0.3
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.9414 0.3901 0.8681 -1.085 0.278
Likelihood ratio test=1.26 on 1 df, p=0.2613
n= 22, number of events= 7
============================
TCGA-COAD CFLAR
[1] 34
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11 4 3.37 0.119 0.234
strata=LOW 11 3 3.63 0.110 0.234
Chisq= 0.2 on 1 degrees of freedom, p= 0.6
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.3719 0.6895 0.7722 -0.482 0.63
Likelihood ratio test=0.23 on 1 df, p=0.628
n= 22, number of events= 7
============================
TCGA-COAD TICAM1
[1] 35
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11 2 3.56 0.687 1.73
strata=LOW 11 4 2.44 1.005 1.73
Chisq= 1.7 on 1 degrees of freedom, p= 0.2
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 1.101 3.008 0.876 1.257 0.209
Likelihood ratio test=1.7 on 1 df, p=0.1922
n= 22, number of events= 6
============================
TCGA-COAD HSP90AA1
[1] 36
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11 3 2.86 0.00664 0.0128
strata=LOW 11 3 3.14 0.00605 0.0128
Chisq= 0 on 1 degrees of freedom, p= 0.9
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.09246 0.91168 0.81875 -0.113 0.91
Likelihood ratio test=0.01 on 1 df, p=0.9101
n= 22, number of events= 6
============================
TCGA-COAD IL33
[1] 37
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11 5 3.65 0.495 1.23
strata=LOW 11 2 3.35 0.541 1.23
Chisq= 1.2 on 1 degrees of freedom, p= 0.3
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.9320 0.3938 0.8691 -1.072 0.284
Likelihood ratio test=1.23 on 1 df, p=0.2669
n= 22, number of events= 7
============================
TCGA-COAD IRF9
[1] 38
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11 5 3.96 0.274 0.495
strata=LOW 11 4 5.04 0.215 0.495
Chisq= 0.5 on 1 degrees of freedom, p= 0.5
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.4708 0.6245 0.6750 -0.698 0.485
Likelihood ratio test=0.49 on 1 df, p=0.4837
n= 22, number of events= 9
============================
TCGA-COAD SHARPIN
[1] 39
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11 4 4.85 0.149 0.598
strata=LOW 11 3 2.15 0.336 0.598
Chisq= 0.6 on 1 degrees of freedom, p= 0.4
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.6968 2.0074 0.9189 0.758 0.448
Likelihood ratio test=0.59 on 1 df, p=0.4422
n= 22, number of events= 7
============================
TCGA-COAD IFNAR1
[1] 40
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11 3 2.53 0.0868 0.177
strata=LOW 11 3 3.47 0.0633 0.177
Chisq= 0.2 on 1 degrees of freedom, p= 0.7
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.3824 0.6823 0.9151 -0.418 0.676
Likelihood ratio test=0.18 on 1 df, p=0.6731
n= 22, number of events= 6
============================
TCGA-COAD XIAP
[1] 41
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11 4 4.41 0.0389 0.103
strata=LOW 11 4 3.59 0.0478 0.103
Chisq= 0.1 on 1 degrees of freedom, p= 0.7
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.2506 1.2848 0.7819 0.321 0.749
Likelihood ratio test=0.1 on 1 df, p=0.7476
n= 22, number of events= 8
============================
TCGA-COAD VDAC3
[1] 42
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11 3 2.74 0.0242 0.0448
strata=LOW 11 3 3.26 0.0204 0.0448
Chisq= 0 on 1 degrees of freedom, p= 0.8
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.1729 0.8412 0.8179 -0.211 0.833
Likelihood ratio test=0.04 on 1 df, p=0.8327
n= 22, number of events= 6
============================
TCGA-COAD CAMK2A
[1] 43
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11 5 3.92 0.300 0.603
strata=LOW 11 3 4.08 0.287 0.603
Chisq= 0.6 on 1 degrees of freedom, p= 0.4
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.5668 0.5673 0.7389 -0.767 0.443
Likelihood ratio test=0.61 on 1 df, p=0.4356
n= 22, number of events= 8
============================
TCGA-COAD VDAC1
[1] 44
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11 3 4.36 0.424 1.01
strata=LOW 11 5 3.64 0.508 1.01
Chisq= 1 on 1 degrees of freedom, p= 0.3
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.7426 2.1013 0.7533 0.986 0.324
Likelihood ratio test=1 on 1 df, p=0.3165
n= 22, number of events= 8
============================
TCGA-COAD RIPK3
[1] 45
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11 2 4.36 1.28 2.88
strata=LOW 11 6 3.64 1.54 2.88
Chisq= 2.9 on 1 degrees of freedom, p= 0.09
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 1.3072 3.6957 0.8235 1.587 0.112
Likelihood ratio test=2.95 on 1 df, p=0.0859
n= 22, number of events= 8
============================
TCGA-COAD CAPN1
[1] 46
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11 3 3.31 0.0282 0.0666
strata=LOW 11 3 2.69 0.0345 0.0666
Chisq= 0.1 on 1 degrees of freedom, p= 0.8
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.2167 1.2420 0.8412 0.258 0.797
Likelihood ratio test=0.07 on 1 df, p=0.7969
n= 22, number of events= 6
============================
TCGA-COAD USP21
[1] 47
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11 2 1.97 0.000522 0.00108
strata=LOW 11 2 2.03 0.000506 0.00108
Chisq= 0 on 1 degrees of freedom, p= 1
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.03366 0.96690 1.02466 -0.033 0.974
Likelihood ratio test=0 on 1 df, p=0.9738
n= 22, number of events= 4
============================
TCGA-COAD AIFM1
[1] 48
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11 3 3.38 0.0433 0.0854
strata=LOW 11 4 3.62 0.0405 0.0854
Chisq= 0.1 on 1 degrees of freedom, p= 0.8
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.2249 1.2523 0.7711 0.292 0.771
Likelihood ratio test=0.09 on 1 df, p=0.7696
n= 22, number of events= 7
============================
TCGA-COAD TRADD
[1] 49
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11 3 2.73 0.0271 0.0638
strata=LOW 11 3 3.27 0.0226 0.0638
Chisq= 0.1 on 1 degrees of freedom, p= 0.8
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.2372 0.7888 0.9409 -0.252 0.801
Likelihood ratio test=0.06 on 1 df, p=0.8
n= 22, number of events= 6
============================
TCGA-COAD OPTN
[1] 50
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11 4 3.89 0.00311 0.00611
strata=LOW 11 5 5.11 0.00237 0.00611
Chisq= 0 on 1 degrees of freedom, p= 0.9
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.05547 0.94604 0.70976 -0.078 0.938
Likelihood ratio test=0.01 on 1 df, p=0.9377
n= 22, number of events= 9
============================
TCGA-COAD PPID
[1] 51
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11 2 2.22 0.02088 0.038
strata=LOW 11 5 4.78 0.00966 0.038
Chisq= 0 on 1 degrees of freedom, p= 0.8
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.1788 1.1958 0.9188 0.195 0.846
Likelihood ratio test=0.04 on 1 df, p=0.8449
n= 22, number of events= 7
============================
TCGA-COAD RIPK1
[1] 52
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11 4 2.86 0.451 0.903
strata=LOW 11 4 5.14 0.251 0.903
Chisq= 0.9 on 1 degrees of freedom, p= 0.3
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -0.8254 0.4381 0.8897 -0.928 0.354
Likelihood ratio test=0.92 on 1 df, p=0.3378
n= 22, number of events= 8
============================
TCGA-COAD TLR3
[1] 53
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11 4 2.57 0.793 1.65
strata=LOW 11 3 4.43 0.461 1.65
Chisq= 1.6 on 1 degrees of freedom, p= 0.2
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -1.3402 0.2618 1.1217 -1.195 0.232
Likelihood ratio test=1.78 on 1 df, p=0.1827
n= 22, number of events= 7
============================
TCGA-COAD FAF1
[1] 54
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11 2 2.09 0.00399 0.00864
strata=LOW 11 2 1.91 0.00437 0.00864
Chisq= 0 on 1 degrees of freedom, p= 0.9
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW 0.09451 1.09912 1.01707 0.093 0.926
Likelihood ratio test=0.01 on 1 df, p=0.926
n= 22, number of events= 4
============================
TCGA-COAD JAK1
[1] 55
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11 3 1.9 0.634 1.21
strata=LOW 11 2 3.1 0.389 1.21
Chisq= 1.2 on 1 degrees of freedom, p= 0.3
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -1.1978 0.3019 1.1551 -1.037 0.3
Likelihood ratio test=1.25 on 1 df, p=0.2629
n= 22, number of events= 5
============================
Display the results only for genes where a significant difference in survival has been reported.
significant_genes
[1] "TNFRSF1A"
num_significant_genes <- length(significant_genes)
if (num_significant_genes > 0) {
for (i in 1 : num_significant_genes) {
project <- significant_projects[[i]]
gene <- significant_genes[[i]]
cat(project, gene, "\n\n")
gene_df <- construct_gene_df(gene, project)
fit <- compute_surival_fit(gene_df)
survival <- compute_survival_diff(gene_df)
cox <- compute_cox(gene_df)
print(survival)
cat("\n")
print(cox)
print(plot_survival(fit))
cat("\n\n============================\n\n")
}
}
TCGA-COAD TNFRSF1A
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata,
data = gene_df)
N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 11 5 2.64 2.10 4.04
strata=LOW 11 2 4.36 1.28 4.04
Chisq= 4 on 1 degrees of freedom, p= 0.04
Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)
coef exp(coef) se(coef) z p
strataLOW -1.9975 0.1357 1.1300 -1.768 0.0771
Likelihood ratio test=4.28 on 1 df, p=0.03856
n= 22, number of events= 7
============================
De La Salle University, Manila, Philippines, gonzales.markedward@gmail.com↩︎
De La Salle University, Manila, Philippines, anish.shrestha@dlsu.edu.ph↩︎